วันเสาร์ที่ 22 กุมภาพันธ์ พ.ศ. 2557

บทที่ 8 เทคโนโลยีอวกาศ ♥




 หลักการของกล้องโทรทรรศน์ 
  กล้องโทรทรรศน์ (Telescope) เป็นกล้องส่องทางไกลซึ่งนักดาราศาสตร์ใช้ศึกษาวัตถุท้องฟ้า มีสมบัติที่สำคัญ 2 ประการ คือ
 ความสามารถในการรวมแสง - กล้องโทรทรรศน์สามารถรวมแสงได้มากกว่าดวงตาของมนุษย์ ช่วยให้สามารถมองเห็นวัตถุซึ่งมีความสว่างน้อย เช่น เนบิวลา และกาแล็กซี 
 ความสามารถในการขยาย - กล้องโทรทรรศน์ช่วยขยายขนาดของภาพ ทำให้มองเห็นรายละเอียดของวัตถุได้มากขึ้น เช่น หลุมบนดวงจันทร์ ดาวเคราะห์ ดาวคู่ เป็นต้น
  อุปกรณ์ที่สำคัญของกล้องโทรทรรศน์คือ เลนส์นูน มีหน้าที่รวมแสงให้มาตกที่จุดโฟกัส (Focus) เราเรียกระยะทางระหว่างจุดกึ่งกลางของเลนส์กับจุดโฟกัสว่า "ความยาวโฟกัส" (Focal length)
 หากใช้เลนส์นูนส่องมองวัตถุที่มีระยะใกล้กว่าความยาวโฟกัส เลนส์นูนจะช่วยในการขยายภาพ 
 หากใช้เลนส์นูนส่องมองวัตถุที่มีระยะไกลกว่าความยาวโฟกัส เลนส์นูนจะข่วยในการรวมแสง แล้วให้ภาพหัวกลับ ดังภาพที่ 1

ภาพที่ เลนส์นูนหักเหแสงให้ภาพหัวกลับ

 กำลังรวมแสง  
    สมบัติที่สำคัญที่สุดประการหนึ่งของกล้องโทรทรรศน์คือ "กำลังรวมแสง" (Light-gathering power)กล้องโทรทรรศน์ช่วยให้นักดาราศาสตร์มองเห็นวัตถุในห้วงอวกาศที่อยู่ห่างไกล เช่น เนบิวลา กระจุกดาว และกาแล็กซีต่างๆ ซึ่งไม่สามารถมองเห็นได้ด้วยตาเปล่า เนื่องจากแสงเดินทางมาจากระยะทางที่ไกลมาก ความเข้มของแสงจึงลดลง   เลนส์ของกล้องโทรทรรศน์มีพื้นที่รับแสงได้มากกว่าดวงตาของมนุษย์ จึงมีกำลังรวมแสงมากกว่า อย่างไรก็ตามเราไม่สามารถกำหนดค่ากำลังรวมแสงของเลนส์เป็นค่าเฉพาะได้ หากแต่กำหนดด้วยการเปรียบเทียบเป็นอัตราส่วนระหว่างเลนส์สองชุด
ตัวอย่าง: เมื่อเปรียบเทียบเลนส์ของกล้องโทรทรรศน์ ซึ่งมีขนาดเส้นผ่านศูนย์กลาง 500 มิลลิเมตร กับดวงตาของมนุษย์ (กระจกตาดำ) ซึ่งมีขนาดเส้นผ่านศูนย์กลางประมาณ 5 มิลลิเมตร จะเห็นว่า เลนส์ของกล้องโทรทรรศน์มีขนาดใหญ่กว่าดวงตาของมนุษย์ = 500/5 = 100 เท่า  และมีกำลังรวมแสงมากกว่า 100= 10,000 เท่า  

 กำลังขยาย 
   นอกจากสมบัติในการรวมแสงแล้ว นักดาราศาสตร์ยังต้องการ กำลังขยาย (Magnification)
ในการศึกษารายละเอียดของวัตถุท้องฟ้า เช่น ลักษณะของดาวเคราะห์ ระยะห่างระหว่างดาวคู่  ซึ่งเราสามารถคำนวณกำลังขยายของกล้องโทรทรรศน์ด้วยสูตร
  กำลังขยาย = ความยาวของโฟกัสของเลนส์ใกล้วัตถุ/ความยาวของโฟกัสของเลนส์ใกล้ตา = fo/fe 
 ตัวอย่าง: ถ้าเลนส์ใกล้วัตถุมีความยาวโฟกัส 1000 มิลลิเมตร  เลนส์ใกล้ตามีความยาวโฟกัส 10 มิลลิเมตร กำลังขยายที่ได้คือ  fo/fe = 1000/10 = 100 เท่า 
  เราสามารถเปลี่ยนกำลังขยายของกล้องโทรทรรศน์ให้เหมาะสมกับการใช้งานดังตารางที่ 1 โดยการเลือกใช้เลนส์ใกล้ตาที่มีความยาวโฟกัสมากขึ้นหรือน้อยลง อย่างไรก็ตามในทางปฏิบัติ เมื่อเพิ่มกำลังขยายขึ้น 2 เท่า ความสว่างของภาพจะลดลง 4 เท่า ขนาดของเลนส์ใกล้วัตถุเป็นตัวจำกัดกำลังขยายสูงสุด การใช้กำลังขยายสูงโดยที่เลนส์ใกล้วัตถุมีขนาดเล็กเกินไปจะได้ภาพคุณภาพต่ำและมืดเกินไป  โดยปกติกำลังขยายสูงสุดที่ใช้งานได้จริงมีค่าประมาณ 50 คูณด้วยขนาดเส้นผ่านศูนย์กลางของเลนส์ใกล้วัตถุซึ่งมีหน่วยเป็นนิ้ว ตัวอย่างเช่น กล้องขนาดเส้นผ่านศูนย์กลาง 100 มิลลิเมตรหรือ 4 นิ้ว จะมีกำลังขยายที่ใช้งานได้ไม่เกิน 50 x 4 = 200 เท่า   
 นอกจากนั้นแม้ว่าเลนส์ใกล้วัตถุจะมีขนาดใหญ่มาก แต่เมื่อใข้กำลังขยายมากกว่า 400 เท่า จะเป็นการขยายภาพกระแสอากาศไปด้วย ภาพที่ได้จะเบลอสั่นเหมือนการมองดูปลาที่อยู่ในกระแสน้ำที่ไหลเชี่ยว  ด้วยเหตุนี้นักวิทยาศาสตร์จึงสร้างกล้องโทรทรรศน์ขนาดใหญ่บนยอดภูเขาสูงที่ซึ่งมีอากาศบาง หรือส่งกล้องโทรทรรศน์ขึ้นไปอยู่ในอวกาศเพื่อให้ภาพคมชัด เนื่องจากไม่มีบรรยากาศเป็นอุปสรรคขวางกั้นทางเดินของแสงเลย 
ตารางที่ 1 เปรียบเทียบกำลังขยายของกล้องโทรทรรศน์

 อัตราส่วนโฟกัส  
       อัตราส่วนโฟกัส (Focal ratio) เป็นสมบัติที่สำคัญอีกประการหนึ่งของกล้องโทรทรรศน์ ซึ่งเป็นอัตราส่วนระหว่างเส้นผ่านศูนย์กลางของเลนส์วัตถุกับความยาวโฟกัสของเลนส์ใกล้วัตถุ ซึ่งมักแสดงด้วยอักษร f/ กำกับอยู่บนเลนส์ ตัวอย่างเช่น
        เลนส์เส้นผ่านศูนย์กลาง 100 มิลลิเมตร ความยาวโฟกัส 500 มิลลิเมตร มีอัตราส่วนโฟกัส 
f/5
        
เลนส์เส้นผ่านศูนย์กลาง 100 มิลลิเมตร  ความยาวโฟกัส 1,000 มิลลิเมตร มีอัตราส่วนโฟกัส f/10 
        การออกแบบกล้องโทรทรรศน์ให้เหมาะสมกับการใช้งาน ขึ้นอยู่กับการเลือกใช้เลนส์ใกล้วัตถุที่มีอัตราส่วนโฟกัสดังนี้ 
 เลนส์นูนหรือกระจกเว้าที่มีค่า f/ น้อย (f/3 - f/7) มีกรวยรับแสงกว้าง ให้กำลังขยายต่ำ แต่ให้ภาพสว่าง เหมาสำหรับใช้ดูวัตถุขนาดใหญ่ที่มีความสว่างน้อย เช่น กาแล็กซี 
 เลนส์นูนหรือกระจกเว้าที่มีค่า f/ น้อย (f/3 - f/7) มีกรวยรับแสงกว้าง ให้กำลังขยายต่ำ แต่ให้ภาพสว่าง เหมาสำหรับใช้ดูวัตถุขนาดใหญ่ที่มีความสว่างน้อย เช่น กาแล็กซี 
เลนส์นูนหรือกระจกเว้าที่มีค่า f/ มาก (f/8 - f/15) มีกรวยรับแสงแคบ ให้กำลังขยายสูง แต่ให้ภาพไม่สว่าง เหมาะสำหรับใช้ดูวัตถุขนาดเล็กที่มีความสว่างมาก เช่น ดาวเคราะห์ 
ประเภทของกล้องโทรทรรศน์  
กล้องโทรทรรศน์แบบหักเหแสง        
      กล้องโทรทรรศน์แบบหักเหแสง (Refractor telescope) เป็นกล้องโทรทรรศน์ที่ใช้เลนส์นูนในการรวมแสง  มีใช้กันอย่างแพร่หลายสามารถพบเห็นได้ทั่วไป กล้องโทรทรรศน์แบบหักเหแสงส่วนมากมักมีขนาดเล็กเนื่องจากเลนส์นูนส่วนใหญ่มีโฟกัสยาว (เลนส์โฟกัสสั้นสร้างยากและมีราคาสูงมาก) ดังนั้นถ้าเป็นกล้องโทรทรรศน์ขนาดใหญ่จะยาวเกะกะ ลำกล้องมีน้ำหนักมาก เปลืองพื้นที่ในการติดตั้ง จึงไม่เป็นที่นิยมใช้ในหอดูดาว  กล้องโทรทรรศน์แบบหักเหแสงเหมาะสำหรับใช้ศึกษาวัตถุที่สว่างมาก เช่น ดวงจันทร์และดาวเคราะห์  แต่ไม่เหมาะสำหรับการสังเกตวัตถุที่มีขนาดใหญ่แต่สว่างน้อย เช่น เนบิลาและกาแล็กซี  เนื่องจากมีกำลังรวมแสงน้อยและให้กำลังขยายมากเกินไป ภาพที่ได้จึงมีสว่างน้อยและมีขนาดใหญ่จนไม่สามารถมองเห็นภาพรวมของวัตถุ
ภาพที่ กล้องโทรทรรศน์แบบหักเหแสง
    เลนส์ที่ใช้ในกล้องโทรทรรศน์เป็นเลนส์อรงค์ (Achromatic lens) ซึ่งมีสมบัติในการแก้ความคลาดสี  แสงที่ตาเห็น (Visible light) เป็นคลื่นแม่เหล็กไฟฟ้าซึ่งมีความยาวคลื่นตั้งแต่ 400 - 700 นาโนเมตร สีม่วงมีความยาวคลื่นสั้นที่สุด สีแดงมีความยาวคลื่นมากที่สุด   เมื่อแสงมีความยาวคลื่นไม่เท่ากันถูกหักเหผ่านเลนส์ จุดโฟกัสที่เกิดขึ้นจึงไม่ใช่จุดเดียวกันทำให้เกิด "ความคลาดสี" (Chromatic aberration) ดังภาพที่ 2  เมื่อนำมาส่องก็จะมองเห็นขอบวัตถุเป็นสีรุ้ง ดังนั้นหากนำมาส่องมองดาวก็จะไม่ทราบเลยว่า ดาวที่ดูอยู่นั้นแท้ที่จริงเป็นสีอะไร  ดังนั้นนักวิทยาศาสตร์จึงออกแบบเลนส์อรงค์ขึ้นมาโดยใช้แก้วคราวน์ (Crown) และแก้วฟลินท์ (Flint) ซึ่งมีดัชนีการหักเหแสงตรงข้ามกัน มาประกบกันเพื่อทำให้แสงทุกความยาวคลื่นหักเหมารวมที่จุดโฟกัสเดียวกันดังภาพที่ 3  เลนส์อรงค์มีน้ำหนักมากและราคาแพงมาก การประดิษฐ์กล้องโทรทรรศน์ขนาดใหญ่จึงเลี่ยงไปใช้กระจกเว้าแทน 

ภาพที่ 2 ความคลาดสีซึ่งเกิดขึ้นจากเลนส์เดี่ยว


ภาพที่ 3 เลนส์อรงค์ช่วยลดความคลาดสี
 กล้องโทรทรรศน์แบบสะท้อนแสง 
     กล้องโทรทรรศน์แบบสะท้อนแสง (Reflector telescope) ถูกคิดค้นโดย เซอร์ ไอแซค นิวตัน  บางครั้งจึงถูกเรียกว่า "กล้องโทรทรรศน์แบบนิวโทเนียน" (Newtonian telescope) กล้องโทรทรรศน์แบบนี้ใช้กระจกเว้าทำหน้าที่เลนส์ใกล้วัตถุแทนเลนส์นูน รวบรวมแสงส่งไปยังกระจกทุติยภูมิซึ่งเป็นกระจกเงาระนาบขนาดเล็กติดตั้งอยู่ในลำกล้อง   สะท้อนลำแสงให้ตั้งฉากออกมาที่เลนส์ตาที่ติดตั้งอยู่ที่ด้านข้างของลำกล้อง ดังภาพที่ 4  
ภาพที่ 4 กล้องโทรทรรศน์แบบสะท้อนแสง

   กล้องโทรทรรศน์ขนาดใหญ่ส่วนมากเป็นกล้องโทรทรรศนสะท้อนแสง เนื่องจากกระจกเว้ามีน้ำหนักเบาและราคาถูกกว่าเลนส์อรงค์  นอกจากนั้นกระจกเว้ายังสามารถสร้างให้มีความยาวโฟกัสสั้นได้ง่าย  หอดูดาวจึงนิยมติดตั้งกล้องโทรทรรศน์แบบสะท้อนแสงขนาดใหญ่ซึ่งมีกำลังรวมแสงสูง ทำให้สามารถสังเกตเห็นวัตถุที่มีความสว่างน้อยและอยู่ไกลมาก เช่น เนบิวลาและกาแล็กซี         อย่างไรก็ตามเมื่อเปรียบเทียบกล้องโทรทรรศน์แบบหักเหแสงกับกล้องโทรทรรศน์แบบสะท้อนแสงที่มีขนาดเท่ากัน กล้องโทรทรรศน์แบบหักเหแสงจะให้ภาพสว่างและคมชัดกว่า เนื่องจากกล้องโทรทรรศน์แบบสะท้อนแสงมีกระจกทุติยภูมิอยู่ในลำกล้องซึ่งเป็นอุปสรรคขวางทางเดินของแสง ทำให้ความสว่างของภาพลดลง  นอกจากนั้นภาพที่เกิดจากหักเหผ่านเลนส์อรงค์ยังมีความคมชัดและสว่างกว่าภาพที่ได้จากการสะท้อนของกระจกเว้า
 กล้องโทรทรรศน์ชนิดผสม 
    กล้องโทรทรรศน์แบบผสม (Catadioptic telescope) เป็นกล้องโทรทรรศน์แบบสะท้อนแสงที่ใช้การสะท้อนแสงกลับไปมาเพื่อให้ลำกล้องมีขนาดสั้นลง โดยใช้กระจกนูนเป็นกระจกทุติยภูมิช่วยบีบลำแสงทำให้ลำกล้องสั้นกระทัดรัด แต่ยังคงกำลังขยายสูงดังภาพที่ 5 อย่างไรการทำงานของ     กระจกนูนทำให้ภาพที่เกิดขึ้นบนระนาบโฟกัสมีความโค้ง จึงจำเป็นต้องติดตั้งเลนส์ปรับแก้ (Correction plate) ไว้ที่ปากลำกล้องเพื่อทำงานร่วมกับกระจกทุติยภูมิ ในการชดเชยความโค้งของระนาบโฟกัส โดยที่เลนส์ปรับแก้ไม่ได้มีอิทธิพลต่อกำลังรวมแสงและกำลังขยายเลย
ภาพที่ 5 กล้องโทรทรรศน์ชนิดผสม

    กล้องโทรทรรศน์แบบผสมถูกออกแบบขึ้นมาเพื่อให้มีลำกล้องสั้นและสะดวกในการติดตั้งอุปกรณ์ เช่น เลนส์ตาหรือกล้องถ่ายภาพไว้ที่ด้านหลังของกล้อง (ดังเช่นกล้องโทรทรรศแบบหักเหแสง) กล้องโทรทรรศน์แบบนี้มีความยาวโฟกัสมากเหมาะสำหรับใช้สำรวจวัตถุขนาดเล็ก เช่น ดาวเคราะห์ เนบิวลาและกาแล็กซีที่อยู่ห่างไกล  แต่ไม่เหมาะสำหรับการสังเกตวัตถุขนาดใหญ่ เช่น กระจุกดาวเปิด เนบิวลา และกาแล็กซีที่อยู่ใกล้  กล้องโทรทรรศน์แบบผสมเป็นที่นิยมในหมู่นักดูดาวสมัครเล่นเพราะมีขนาดกระทัดรัด ขนย้ายสะดวก  แต่ไม่เหมาะสำหรับใช้ในงานวิจัยทางวิทยาศาสตร์ เนื่องจากเลนส์ปรับแก้ที่อยู่ด้านหน้ากรองรังสีบางช่วงความยาวคลื่นออกไป 


  กล้องโทรทรรศน์อวกาศฮับเบิล (อังกฤษHubble Space Telescope) คือ กล้องโทรทรรศน์ในวงโคจรของโลกที่กระสวยอวกาศดิสคัฟเวอรีนำส่งขึ้นสู่วงโคจรเมื่อเดือนเมษายน ค.ศ. 1990 ตั้งชื่อตามนักดาราศาสตร์ชาวอเมริกันชื่อ เอ็ดวิน ฮับเบิล กล้องโทรทรรศน์อวกาศฮับเบิลไม่ได้เป็นกล้องโทรทรรศน์อวกาศตัวแรกของโลก แต่มันเป็นหนึ่งในเครื่องมือวิทยาศาสตร์ที่สำคัญที่สุดในประวัติศาสตร์การศึกษาดาราศาสตร์ที่ทำให้นักดาราศาสตร์ค้นพบปรากฏการณ์สำคัญต่าง ๆ อย่างมากมาย กล้องโทรทรรศน์ฮับเบิลเกิดขึ้นจากความร่วมมือระหว่างองค์การนาซาและองค์การอวกาศยุโรป โดยเป็นหนึ่งในโครงการหอดูดาวเอกขององค์การนาซาที่ประกอบด้วย กล้องโทรทรรศน์อวกาศฮับเบิล กล้องรังสีแกมมาคอมป์ตัน กล้องรังสีเอกซ์จันทรา และกล้องโทรทรรศน์อวกาศสปิตเซอร์
 วงโคจรของดาวเทียม 
    การออกแบบวงโคจรของดาวเทียมขึ้นอยู่กับวัตถุประสงค์ของการใช้งานดาวเทียม ระดับความสูงของดาวเทียมมีความสัมพันธ์กับคาบเวลาในวงโคจรตามกฎของเคปเลอร์ข้อที่ 3 (กำลังสองของคาบวงโคจรของดาวเทียม แปรผันตาม กำลังสามของระยะห่างจากโลก) ดังนั้น ณ ระดับความสูงจากผิวโลกระดับหนึ่ง ดาวเทียมจะต้องมีความเร็วในวงโคจรค่าหนึ่ง มิฉะนั้นดาวเทียมอาจตกสู่โลกหรือหลุดจากวงโคจรรอบโลก ดาวเทียมวงโคจรต่ำเคลื่อนที่เร็ว ดาวเทียมวงโคจรสูงเคลื่อนที่ช้า 
        นักวิทยาศาสตร์คำนวณหาค่าความเร็วในวงโคจรได้โดยใช้ “กฎความโน้มถ่วงแห่งเอกภพของนิวตัน” (Newton's Law of Universal Gravitation) “วัตถุสองชิ้นดึงดูดกันด้วยแรงซึ่งแปรผันตามมวลของวัตถุ แต่แปรผกผันกับระยะทางระหว่างวัตถุยกกำลังสอง” ดังนี้
แรงสู่ศูนย์กลาง = แรงโน้มถ่วงของโลก 
                    mv2/r  = G (Mm/r2)
                      v    =  (GM/r)1/2 
โดยที่ v = ความเร็วของดาวเทียม
          M = มวลของโลก
          m = มวลของดาวเทียม
          r = ระยะทางระหว่างศูนย์กลางของโลกกับดาวเทียม
          G = ค่าคงที่ของแรงโน้มถ่วง = 6.67 x 10-11 Nm2/kg2  
ตัวอย่างที่ 1 ถ้าต้องการส่งดาวเทียมให้โคจรรอบโลกที่ระดับสูง 35,780 กิโลเมตร ดาวเทียมจะต้องมีความเร็วในวงโคจรเท่าไร 
                                      r  = 6,380 km (รัศมีโลก) + 35,786 km (ระยะสูงของวงโคจร) = 4.23 x 107 km
                                      v  =  (GM/r)1/2  
                                          =  {(6.67 x 10-11 Nm2/kg2)(5.98 x 1028 kg)/(4.23 x 107)} 1/2
                                         =  11,052 กิโลเมตร
      ข้อมูลในตารางที่ 1 แสดงให้เห็นถึงความสัมพันธ์ระหว่างระดับความสูงของดาวเทียมและความเร็วในวงโคจร  กฎแปรผกผันยกกำลังสองของนิวตันกล่าวว่า ยิ่งใกล้ศูนย์กลางของแรงโน้มถ่วง (ศูนย์กลางของโลก) แรงโน้มถ่วงจะเพิ่มขึ้น  ดังนั้น 
 ถ้าต้องการให้ดาวเทียมมีวงโคจรต่ำ ดาวเทียมจะต้องเคลื่อนที่เร็วมาก เพื่อเอาชนะแรงโน้มถ่วงของโลก ดาวเทียมวงโคจร ดาวเทียมวงโคจรต่ำจึงโคจรรอบโลกใช้เวลาน้อยที่สุด
 ดาวเทียมวงโคจรสูงมีความเร็วในวงโคจรช้ากว่าวงโคจรต่ำ ทั้งนี้เนื่องจากสูงขึ้นไป ยิ่งอยู่ห่างจากศูนย์กลางแรงโน้มถ่วง ดาวเทียมวงโคจรสูงจึงโคจรรอบโลกใช้เวลามากกว่าดาวเทียมวงโคจรต่ำ
 ถ้าต้องการให้ดาวเทียมโคจรไปพร้อมๆ กับที่โลกหมุนรอบตัวเอง ดาวเทียมจะลอยค้างอยู่เหนือพิกัดภูมิศาสตร์ที่ระบุบนพื้นผิวโลกตลอดเวลา จะต้องส่งดาวเทียมให้อยู่ที่ความสูง 35,786 กิโลเมตร เหนือพื้นผิวโลก วงโคจรระดับนี้เรียกว่า "วงโคจรค้างฟ้า" (Geo-Stationary orbit) ซึ่งเหมาะสำหรับใช้ในการสะท้อนสัญญาณโทรคมนาคม และการถ่ายภาพที่ครอบคลุมบริเวณกว้าง   
ภาพที่ 1 วงโคจรประเภทต่างๆ 

   ในการออกแบบวงโคจรของดาวเทียม  นอกจากความสูงของวงโคจรแล้ว  ยังต้องคำนึงถึงทิศทางของวงโคจร เนื่องโลกหมุนรอบตัวเอง  นักวิทยาศาสตร์จะต้องคำนึงถึงพื้นที่บนพื้นผิวโลกที่ต้องการให้ดาวเทียมเคลื่อนที่ผ่าน  เราสามารถจำแนกประเภทของวงโคจร ตามระยะสูงของวงโคจรได้ดังนี้ 
 วงโคจรระยะต่ำ (Low Earth Orbit "LEO") อยู่สูงจากพื้นโลกไม่เกิน 1,000 กม. เหมาะสำหรับการถ่ายภาพรายละเอียดสูง ติดตามสังเกตการณ์อย่างใกล้ชิด  แต่เนื่องจากวงโคจรประเภทนี้อยู่ใกล้พื้นผิวโลกมาก ภาพถ่ายที่ได้จึงครอบคลุมพื้นที่เป็นบริเวณแคบ และไม่สามารถครอบคลุมบริเวณใดบริเวณหนึ่งได้นาน เนื่องจากดาวเทียมต้องเคลื่อนที่ด้วยความเร็วสูงมาก  ดาวเทียมวงโคจรต่ำจึงนิยมใช้วงโคจรขั้วโลก (Polar  Orbit) หรือใกล้ขั้วโลก (Near Polar Orbit)  ดาวเทียมจะโคจรในแนวเหนือ-ใต้ ขณะที่โลกหมุนรอบตัวเอง ดาวเทียมจึงเคลื่อนที่ผ่านเกือบทุกส่วนของพื้นผิวโลก ดังที่แสดงในภาพที่ 2
ภาพที่ 2 การสแกนถ่ายภาพของดาวเทียมวงโคจรขั้วโลก


 วงโคจรระยะปานกลาง (Medium Earth Orbit "MEO") อยู่ที่ระยะความสูงตั้งแต่ 1,000 กิโลเมตร จนถึง 35,000 กิโลเมตร  สามารถถ่ายภาพและส่งสัญญาณวิทยุได้ครอบคลุมพื้นที่ได้เป็นบริเวณกว้างกว่าดาวเทียมวงโคจรต่ำ  แต่หากต้องการสัญญาณให้ครอบคลุมทั้งโลกจะต้องใช้ดาวเทียมหลายดวงทำงานร่วมกันเป็นเครือข่ายและมีทิศทางของวงโคจรรอบโลกทำมุมเฉียงหลายๆ ทิศทาง  ดาวเทียมที่มีวงโคจรระยะปานกลางส่วนมากเป็นดาวเทียมนำร่อง เช่น เครือข่ายดาวเทียม GPS ประกอบด้วยดาวเทียมจำนวน 24 ดวง  ทำงานร่วมกันดังภาพที่ 3 โดยส่งสัญญาณวิทยุออกมาพร้อมๆ กัน ให้เครื่องรับที่อยู่บนพื้นผิวโลกเปรียบเทียบสัญญาณจากดาวเทียมแต่ละดวง เพื่อคำนวณหาตำแหน่งพิกัดที่ตั้งของเครื่อง
รับ
ภาพที่ 3 เครือข่ายดาวเทียม GPS


 วงโคจรประจำที่ (Geosynchonus Earth Orbit "GEO") อยู่สูงจากพื้นโลกประมาณ 35,786 กม. มีเส้นทางโคจรอยู่ในแนวเส้นศูนย์สูตร (Equatorial Orbit) ดาวเทียมจะหมุนรอบโลกด้วยความเร็วเชิงมุมเท่ากับโลกหมุนรอบตัวเองทำให้ดูเหมือนลอยนิ่งอยู่เหนือพื้นผิวโลกตำแหน่งเดิมอยู่ตลอดเวลา จึงถูกเรียกว่า "ดาวเทียมวงโคจรค้างฟ้า" (Geo-stationary Earth Orbit "GSO")  เนื่องจากดาวเทียมวงโคจรชนิดนี้อยู่ห่างไกลจากโลกและสามารถลอยอยู่เหนือพื้นโลกตลอดเวลา จึงนิยมใช้สำหรับการถ่ายภาพโลกทั้งดวง เฝ้าสังเกตการณ์เปลี่ยนแปลงของบรรยากาศ  และใช้ในการโทรคมนาคมข้ามทวีป  อย่างไรก็ตามดาวเทียมวงโคจรค้างฟ้าจะต้องลอยอยู่ที่ระดับสูง 35,786 กิโลเมตรเท่านั้น  วงโคจรแบบนี้จึงมีดาวเทียมอยู่หนาแน่น และกำลังจะมีปัญหาการแย่งพื้่นที่ในอวกาศ
ภาพที่ 4 ดาวเทียมวงโคจรประจำที่ 


 วงโคจรูปวงรี (Highly Elliptical Orbit "HEO") เป็นวงโคจรออกแบบสำหรับดาวเทียมที่ปฏิบัติภารกิจพิเศษเฉพาะกิจ  เนื่องจากดาวเทียมความเร็วในวงโคจรไม่คงที่  เมื่ออยู่ใกล้โลกดาวเทียมจะเคลื่อนที่ใกล้โลกมาก และเคลื่อนที่ช้าลงเมื่อออกห่างจากโลกตามกฎข้อที่ 2 ของเคปเลอร์  ดาวเทียมวงโคจรรูปวงรี ส่วนมากเป็นดาวเทียมที่ปฏิบัติงานด้านวิทยาศาสตร์ เช่น ศึกษาสนามแม่เหล็กโลก เนื่องจากสามารถมีระยะห่างจากโลกได้หลายระยะดังภาพที่ 5  หรือเป็นดาวเทียมจารกรรมซึ่งสามารถบินโฉบเข้ามาถ่ายภาพพื้นผิวโลกด้วยระยะต่ำมากและปรับวงโคจรได้ 

ภาพที่ 5 วงโคจรรูปวงรีของดาวเทียมสำรวจสนามแม่เหล็กโลก    
 ระบบขนส่งอวกาศ
    ระบบการขนส่งอวกาศเป็นโครงการที่ถูกออกแบบให้สามารถนำชิ้นส่วนบางส่วนที่ใช้ไปแล้วกลับมาใช้ใหม่อีกเพื่อเป็นการประหยัดและมีประสิทธิภาพมากที่สุด ประกอบด้วย 3 ส่วนหลัก คือ จรวดเชื้อเพลิงแข็ง ถังเชื้อเพลิงภายนอก (สำรองไฮโดรเจนเหลวและออกซิเจนเหลว) และยานอวกาศ

     ระบบขนส่งอวกาศมีน้ำหนักรวมเมื่อขึ้นจากฐานปล่อยประมาณ 2,041,200 กิโลกรัม โดยจรวดเชื้อเพลิงแข็งจะถูกขับเคลื่อนจากฐานปล่อยให้นำพาทั้งระบบขึ้นสู่อวกาศด้วยความเร็วที่มากกว่าค่าความเร็วหลุดพ้น เมื่อถึงระดับหนึ่งจรวดเชื้อเพลิงแข็งทั้งสองข้างจะแยกตัวออกมาจากระบบ จากนั้นถังเชื้อเพลิงภายนอกจะแยกตัวออกจากยานอวกาศ โดยตัวยานอวกาศจะเข้าสู่วงโคจรเพื่อปฏิบัติภารกิจต่อไป ดังรูป
  การปฏิบัติภารกิจสำหรับระบบขนส่งอวกาศมีหลากหลายหน้าที่ ตั้งแต่การทดลองทางวิทยาศาสตร์ (ในสภาวะไร้น้ำหนัก) การส่งดาวเทียม การประกอบกล้องโทรทรรศน์อวกาศ การส่งมนุษย์ไปบนสถานีอวกาศ ฯลฯ ยานอวกาศจึงถูกออกแบบสำหรับบรรทุกคนได้ประมาณ 7-10 คน ปฏิบัติภารกิจได้นานตั้งแต่ไม่กี่ชั่วโมงหรืออาจใช้เวลาถึง 1 เดือน สำหรับโครงการขนส่งอวกาศขององค์การนาซามีอยู่ด้วยกัน 6 โครงการ คือ
1. โครงการเอนเตอร์ไพรส์
2. โครงการโคลัมเบีย
3. โครงการดิสคัฟเวอรี
4. โครงการแอตแลนติส
5. โครงการแชลแลนเจอร์
6. โครงการเอนเดฟเวอร์
 ปัจจุบันเป็นที่ทราบกันว่าโครงการแชลแลนเจอร์และโครงการโคลัมเบียประสบความสูญเสียครั้งร้ายแรง เมื่อยานทั้งสองเกิดระเบิดขึ้นขณะอยู่บนท้องฟ้า โดยระบบขนส่งอวกาศแชลแลนเจอร์ระเบิดเมื่อวันที่ 28 มกราคม 2529 ระหว่างเดินทางขึ้นสู่อวกาศไม่เพียงกี่นาทีด้วยสาเหตจากการรั่วไหลของก๊าซเชื้อเพลิงอุณหภูมิสูงจากรอยต่อของจรวดเชื้อเพลิงแข็งด้านขวาของตัวยาน ทำให้ก๊าซอุณหภูมิสูงดังกล่าวลามไปถึงถังเชื้อเพลิงภายนอกที่บรรจุไฮโดรเจนเหลว จึงเกิดการเผาไหม้อย่างรุนแรงและเกิดระเบิดขึ้น คร่าชีวิตนักบินอวกาศ 7 คน ส่วนระบบขนส่งอวกาศโคลัมเบียเกิดระเบิดขึ้นเมื่อวันที่ 1 กุมภาพันธ์ 2546 (17 ปี หลังการระเบิดของยานแชลแลนเจอร์) โดยวิศวกรนาซาเชื่อว่าอาจเพราะตัวยานมีการใช้งานยาวนานจนอาจทำให้แผ่นกันความร้อนที่หุ้มยานชำรุด ทำให้เกิดระเบิดขึ้นหลังจากนักบินกำลังพยายามร่อนลงสู่พื้นโลก แต่ทั้งสองเหตุการณ์ในสหรัฐอเมริกายังไม่ร้ายแรงเท่าเหตุการณ์ระเบิดของจรวดของสหภาพโซเวียตขณะยังอยู่ที่ฐาน เมื่อวันที่ 24 ตุลาคม 2503 โดยมีผู้เสียชีวิตจากเหตุการณ์ดังกล่าวถึง 165 คน โศกนาฏกรรมเหล่านี้ที่เกิดขึ้นแม้จะทำให้เกิดความสูญเสียทั้งชีวิตและทรัพย์สิน แต่มนุษย์ก็ยังไม่เลิกล้มโครงการอวกาศ ยังมีความพยายามคิดและสร้างเทคโนโลยีใหม่ๆ เพื่อความปลอดภัยและลดค่าใช้จ่ายให้มากขึ้น ด้วยเป้าหมายหลักของโครงการขนส่งอวกาศในอนาคตคือการสร้างสถานีอวกาศถาวรและการทดลองทางวิทยาศาสตร์อื่นๆ  








ไม่มีความคิดเห็น:

แสดงความคิดเห็น